

FINAL INTERNATIONAL UNIVERSITY FACULTY OF ENGINEERING

Program		Com	חמו	ter Engineering							
Medium o	of Instruction	Engli	ish								
Category	/ Assoc / Degr	Associate Degree X Undergraduate (Project Based))	Ma: (Th	sters esis)	PhD				
				CURR	ICU	ILUM					
ABBREV	IATIONS										
UC UF	C: University C E: University E	ore lective		FC: Facult	ty C	ore		AC: A AE: A	rea Co rea Ele	pre ective	
YEAR 1											
FALL											
Semester	Course code			Course name		Course	T	Credit	T (Pre-	ECTS
1	MATH 101	Calcul	116	1	-	EC	A	Pract.	Tot.	requisite	Credits
1	PHYS 101	Physic	us s 1	1		FC	3	2	4		6
1	MATH 103	Discret	te I	Mathematics		FC	3	0	3	-	6
1	COMP 100	Fundar	me	ntals of Computer Eng	<u>y</u> .	AC	2	2	3	_	3
1	COMP 103	Information Technology and Applications				UC	2	1	2	-	3
1	ENGL101	English I				UC	3	0	3	-	6
			,	Fotal Credit				•	19		30
SPRING											
2	MATH 102	Calcul	us	Π		FC	4	1	4	MATH101	6
2	MATH 104	Linear	Al	gebra		FC	3	1	3	-	5
2	PHYS 102	Physic	s Il	[FC	3	2	4	PHYS101	6
2	COMP 104	Compu	ıteı	Programming		UC	3	2	4	-	6
2	ENGL102	English	h Il			UC	3	0	3	ENGL101	6
			,	Fotal Credit					18		29
YEAR 2											
FALL											
3	MATH 205	Differe	enti	al Equations		FC	4	1	4	MATH101 MATH104	6
3	COMP 215	Algori	thn	ns and Data Structures		AC	3	2	4	COMP 104	6
3	COMP 225	Digital Logic Design				AC	3	2	4	MATH103	6
3	ELEC 235	Electri	cal	Circuits		AC	3	2	4	MATH101	6
3	GEED-01	Genera	General Education Elective-I			UE	3	0	3	-	4
3	ENGL201	English	h Il	Ι		FC	2	0	2	ENGL102	4
	Total Credit 21 32						32				

								
SPRING								
4	MATH 206	Probability and Statistics	FC	3	1	3	MATH102	5
4	COMP 216	Object Oriented Programming	AC	3	2	4	COMP104	6
4	COMP 232	Operating Systems	AC	3	0	3	COMP104	6
4	ELEC 240	Electronics	AC	3	1	3	ELEC 235	5
4	GEED-02	General Education Elective-II	UE	3	0	3	-	4
4	HIST100/ TURK100	History of Turkish Republic/ Turkish as a Second Language	UC	2	0	2	-	2
		Total Credit				18		28
YEAR 3								
FALL	T				Γ			
5	MATH 309	Numerical Analysis	AC	3	1	3	COMP104 MATH205	6
5	COMP 321	Microprocessors	AC	3	2	4	COMP225	6
5	COMP 333	Systems Programming	AC	3	0	3	COMP232	6
5	COMP 341	Database Systems	AC	3	2	4	COMP215	6
5	COMP 351	Analysis of Algorithms	AC	3	2	4	COMP215	6
		Total Credit				18		30
SPRING							I	
6	COMP 322	Signals and Systems	AC	3	0	3	ELEC 240	6
6	COMP 324	Computer Architecture	AC	3	0	3	COMP 225	5
6	COMP 332	Data Communication and Computer Networks	AC	3	2	4	COMP 215	6
6	COMP 342	Software Engineering	AC	3	2	4	COMP 215	6
	COMP 352	Programming Languages	AC	3	0	3	COMP 216	6
6						-		-
	1	Total Credit				17		29
YEAR 4								
FALL								
7	COMP 401	Engineering Design I	FC	1	4	3	-	6
7	COMP 403	Summer Training	FC	0	0	0	-	1
7	COMP 471	Computer Simulation	AC	3	0	3	COMP 215 MATH206	6
7	TE-01	Technical Elective	AE	3	0	3		7
7	TE-02	Technical Elective	ΔF	3	0	3		7
7	GEED 03	General Education Elective III		3	0	2		1
/	GEED-03	Total Credit	UE	5	0	5 15	-	4 21
SPRINC		i utai Cicult				13		51
<u>e</u>	COMP 402	Engineering Design II	FC	0	8	1	COMP 401	0
0 Q	COMP 404	Engineering Attributes & Ethics	FC	2	0	4	COMP 401	0
0 8	COMP 404	Automata Theory		2	0	2	- MATH103	5
8	TE-03	Technical Elective	AF	3	0	3	-	7
8	TE-04	Technical Elective	AE	3	0	3	_	7
		Total Credit				15		31
L								

Course	Course Name		Credit				
Code	Course Name	Lec.	Pract.	Tot.	Credits		
COMP 421	Embedded Systems	3	0	3	7		
COMP 422	Real-Time Systems	3	0	3	7		
COMP 431	Advanced Computer Networks	3	0	3	7		
COMP 432	Wireless Communication Networks	3	0	3	7		
COMP 433	Wireless Sensor Networks	3	0	3	7		
COMP 434	Information and Network Security	3	0	3	7		
COMP 441	Database Management Systems	3	0	3	7		
COMP 442	Object-Oriented Programming Languages & Systems	3	0	3	7		
COMP 443	Object-Oriented Systems Analysis and Design	3	0	3	7		
COMP 444	Software Construction	3	0	3	7		
COMP 445	Rapid Application Development	3	0	3	7		
COMP 461	Computing Systems	3	0	3	7		
COMP 462	Service-Oriented Computing	3	0	3	7		
COMP 463	Cloud Computing	3	0	3	7		
COMP 464	Artificial Intelligence	3	0	3	7		
COMP 465	Neural Networks	3	0	3	7		
COMP 466	Expert Systems	3	0	3	7		
COMP 467	Data Mining	3	0	3	7		
COMP 472	Computer Graphics	3	0	3	7		
COMP 473	Digital Image Processing	3	0	3	7		
COMP 474	Introduction to Parallel Computing	3	0	3	7		

AREA / TECHNICAL ELECTIVE COURSES

COURSE BREAKDOWN

							Total		
					Numbe	er	Credit		ECTS Credits
		A	All Cour	rses	44		141		240
	Univer	sity Co	re Cou	rses	5		14		23
	Fac	ulty Co	re Cou	rses	12		40		67
Area Core Courses					19		66		109
Area Elective Courses				rses	4		12		28
Uni	University Elective Courses						9		12
Summer Internship					1		0		1
Total				otal	44		141		240
Semester	1	2	3	4	5	6	7	8	Average
Number of courses	6	5	6	6	5	5	6	5	5.5
Total credits	19	18	21	18	18	17	15	15	17.625
Total ECTS Credits	30	29	32	28	30	29	31	31	30

COURSE DESCRIPTIONS / SYNOPSES

1.	Course code: MATH 101	Course title: Calculus I
	Functions, limit, continuity and derivative. Mean	Value Theorem and applications. Definite and indefinite
	integrals. Logarithmic, exponential, hyperbolic and i	nverse trigonometric functions. L'Hopital's Rule. Integration
	techniques. Area, volume and rotational surface area	a calculation. Applications in physics. Sequences and series.
	Power and Taylor series.	
	Text book: Thomas' Calculus, 13th Edition, Georg	e B. Thomas, Maurice D. Weir, Joel R. Hass, Published by
	Pearson, 2016.	

2.	Course code: PHYS 101	Course title: Physics I			
	Measurement standards and units, vectors and coordin	nate systems, dynamics, work, energy and power,			
	conservation of energy, systems of particles, collisions, rotation, equilibrium of solids, oscillations, gravity.				
	Textbook: Sears & Zemansky's University Physics with Modern Physics. 14 th Ed., Hugh D. Young, Roger A.				
	Freedman, Pearson Education Limited, 2016.				

3.	Course code: MATH209	Course title: Discrete Mathematics
	Set theory, functions and relations; inductive proof	s and recursive definitions. Combinatorics; counting rules,
	permutations, combinations, allocation problems,	selection problems. Relations and digraphs. Generating
	functions; ordinary generating functions and their	applications. Recurrence relations. Analysis of algorithms.
	Propositional calculus and Boolean algebra; basic E	Boolean functions, digital logic gates, minterm and maxterm
	expansions, simplifying Boolean functions. Graphs	and trees; adjacency matrices, incidence matrices. Eulerian
	graphs, Hamiltonian graphs, colored graphs, planar	graphs, spanning trees, minimal spanning trees. Languages
	and finite-state machines.	

4.	Course code: COMP 100 Course title: Fundamentals of Computer Engineering			
	Introduction to Computer Engineering. Professional fields in which Computer Engineers perform.			
	Professionalism, values, attributes and ethics for Computer Engineers. Academic integrity and ethical issues in			
	academia and research. Introduction to fundamentals of computer systems; computer organization, hardware and			
	software, operating systems, language processors, user interfaces, computer networks. Introduction to algorithms			
	and programming; machine, assembly and high level languages. Problem solving and algorithm development.			
	Correctness and efficiency of programs. Data validation and exception handling. The C programming language.			
	Arithmetic and logical statements, data types, input/output, structured programming; sequence, selection and			
	iteration; control structures.			
	Textbook: Computers Are Your Future Complete, C. Laberta, 12 th Ed., Pearson Education Ltd., 2014.			
	Secondary Textbook: C How to Program, 8 th Ed., Deitel & Deitel, Prentice Hall, 2016.			

5.	Course code: COMP 103	Course title: Information Technology & Applications			
	This course aims to introduce all students to the basi	c concepts of information technology and to train them in the			
	to be able to continue to use these skills during their undergraduate studies as well as professional lives after				
	graduation.				

6.	Course code: ENGL101	Course title: English – I
	This is a first-semester EAP course for freshmar	a students, and it focuses on developing both receptive and
	productive skills as well as the study skills required	for university-level coursework.

7.	Course code: MATH 102	Course title: Calculus II
	Plane and polar co-ordinates, area in polar	co-ordinates, arc length of curves. Limit, continuity and
	differentiability of function of several variables, ex	treme values, method of Lagrange multipliers. Double integral,
	triple integral with applications. Line integrals, Gre	een's theorem. Sequences, infinite series, power series, Taylor's
	series. Complex numbers.	
	Textbook: Calculus, Thomas- Finney, Addison-We	esley, 1998.

8.	Course code: MATH 104	Course title: Linear Algebra
	Matrices, determinant. System of a linear equations	. Vector spaces. Base and dimension. Linear transformations.

Base transformation. Inverse of a linear transformation. Characteristic equations, eigenvalues and eigenvectors and Jordan form. Numerical techniques for calculation of eigenvalues and eigenvectors. Inner product spaces, diagonality, quadratic forms. Norm of a vector space

Textbook: Steven, J. Leon, "Linear Algebra with Applications", Prentice Hall, 1998.

9.	Course code: PHYS 102	Course title: Physics II
	Charge, electrical field and Gauss's Law. Basic ci	rcuits and Kirchhoff's Laws. Magnetic field. Ampere's Law.
	Faraday's Laws. Resistance, Magnetic properties of	f the material. Maxwell equations. Electromagnetic waves and
	introduction to modern physics.	
	Textbook: Physics for Scientist and Engineering, 5 th	^h Ed., Serway-Beichner.

10.Course code: COMP 104Course title: Computer ProgrammingReview of the C programming language. Structured and modular programming using C. Local and global
variables. Structured programming constructs. Arrays and array handling. Multi-dimensional arrays. Structures
and Unions. Arrays of structures. Defining new data types in C. Functions in C. Call-by-value and call-by-
reference. Character and string functions. Scope and extent. Recursion. Pointers and pointer arithmetic. Dynamic
memory allocation and simple data structures in C. Arrays of pointers. Bit manipulation. Files; data and file
processing. Conditional compilation and exception handling in C.Textbook: Deitel & Deitel, C How to Program, 8th Ed., Prentice Hall, 2016.

 11.
 Course code: ENGL102
 Course title: English – II

 This course is continuation of ENGL 101- English I. It involves further development of students' EAP oral and written communication skills as well as further development of the study skills essential to success at this level.

12.	Course code: MATH 205	Course title: Differential Equations
	Classification of differential equations. Solving me	ethods of first order differential equations. Linear differential
	equations of higher degrees. Method of undeterr	nined coefficients. Laplace transformation and convolution.
	Differential equations with several variables.	
	Textbook: Elementary Differential Equations and	Boundary Value Problems, William E. Boyce – Richard C.
	Diprima John-Wiley 1992	

13. Course code: ELEC 235
 Course title: Electrical Circuits

 Circuits, currents and voltages, power and energy, Kirchoff's current and voltage laws. Circuit elements and circuits. Resistive circuits: resistance in series and parallel, resistive network analysis by series and parallel equivalents, node and mesh analysis. Thevenin and Norton equivalents. Superposition. Inductance and Capacitance, physical characteristics, practical capacitor and inductors. Impedance and maximum power transfer.

14.	Course code: COMP 215	Course title: Algorithms and Data Structures
	Data structures and their usage. Programming met	hods, sorting, searching algorithms and applications, storage,
	time analysis. Stacks and queues. Linked lists and a	pplications. Recursion. Trees and tree searching algorithms.
	Textbook: Algorithms in C (Vol. 1), Sedgewick, 3r	d Ed. Addison-Wesley, 1998.

15.	Course code: COMP 225	Course title: Digital Logic Design
	Binary Systems. Boolean algebra and logic gates.	Simplification of Boolean functions. Analysis and design of
	combinational circuits. SSI, MSI and LSI eleme	nts. Synchronous sequential logic; flip-flops, counters, shift
	registers. Analysis and design of sequential circ	uits, state tables, state diagrams, state reduction and state
	assignment. Sequential MSI elements. Large scale	system design with MSI. Timing issues. Registers, memory
	elements and programmable logic devices (PLDs).	FSMs and FSMD; datapath and control. Relationship to simple
	computing architecture.	
	Textbook. Digital Design 5 th Ed M Morris Man	and Michael D. Ciletti Prentice Hall 2013

 16.
 Course code: GEED-01 / 02 / 03
 Course title: General Education Elective-I / II / III

 Courses in the General Education classification will be available for students to take as an elective non-technical course. The topics will be balanced between Humanities, Arts and Social Sciences. Approved courses will be announced at the start of each semester by the Faculty of Engineering. One of the courses must be among Introduction to Economics, Business/Engineering Management/Management or Accounting-I courses.

 17.
 Course code: ENGL201
 Course title: English III

 This second year English course helps develop the academic language skills required to write, format, and reference a short professional or technical report, and to present a summary of its contents to a public audience.

18.	Course code: MATH 206	Course title: Probability and Statistics
	Probability concept and basic theorems. Independer	ncy, conditional probability and Bayes' rule. Random variables
	and functions. Some important discrete and contin	uous distributions. Distribution of random variable functions.
	Statistics. Unit, mass, data analysis. Sampling and sampling methods	
	Textbook: Probability And Statistics For Engineers	. LMiller, J.E. Freund.

 19.
 Course code: COMP 216
 Course title: Object Oriented Programming

 Introduction to C++, Classes and Objects, File Processing, Operator Overloading, Object Oriented Programming,
 Inheritance, Polymorphism, Templates, Stream Input / Output, Exception Handling.

 Textbook:
 Software Engineering in C, Peter A. Darnell, Philip E. Margolis, Springer Verlag, 1988.

20.	Course code: COMP 232	Course title: Operating Systems
	Introduction to operating systems: usage areas, fun organization. Giving precedence to processes. M communication, control of peripherals. Textbook: Abraham Silberscharz, Galvin, Gagne, C Sons, 2010.	ctions and properties. Resource allocation, work and resource Memory management. Interrupts and their control. Internal Operating System Concepts, Eighth Edition, John Wiley &

21.	Course code: ELEC 240 Course title: Electronics
	Semiconductor diode structures and their characteristics, diode circuits. Structures of transistors, biasing in
	transistor circuits and transistor amplifiers. Introduction to digital compound circuits. Basic logic gates and
	memory gates.
	Textbook: Electric Circuits, Nilsson & Riedel, Microelectronic circuits by Sedra & Smith

22.	Course code: GEED-02	Course title: General Education Elective-II
	See GEED-01 course description.	

 23a.
 Course code: HIST100
 Course title: History of Turkish Republic

 This course is designed to provide Turkish-speak
 students enrolled in English-medium programs with a brief

 historical account of the Republic of Turkey.
 students enrolled in English-medium programs with a brief

23b.	Course code: TURK100	Course title: Turkish as a Second Language
	This course is designed to provide international	l students with the basic lexis and grammar of the Turkish
	language and to develop basic receptive and produ	ctive skills in Turkish.

24.	Course code: MATH 309	Course title: Numerical Analysis
	Approximate calculation and error concept. Solution	on of nonlinear equations. Approximate root finding methods:
	sequential repeating method, sloping method, New	ton-Raphson method, Bairstow method. Numeric integration
	methods. Finite differences. Numeric derivatives. E	uler method, Taylor method.
	Textbook: S. C.Chapra, R. P.Canale Numerica	al methods for Engineers with Software and Programming
	applications, 2002	

25.	Course code: COMP 321	Course title: Microprocessors
	Systems based on microprocessors and their de-	sign, software and hardware design integration. Memories,
	input/output elements, interrupts and priorities. Da	aisy chaining type of processors. Lines, connections, timing,
	usage of logic state analyzers. Control programm	ing, permanent programs in the memory and programming.
	Synchronous multi-tasking usage and system design	l.
	Textbook: 8088/8086 Microprocessors, Triebel & S	Singh, Prentice Hall

26.	Course code: COMP 333	Course title: Systems Programming
	The Unix Operating System. Systems programming	in the UNIX environment. UNIX commands. Shell principles,

Shell scripting. Permissions and IDs.Terminal Input/Output. Programs in UNIX and programming in UNIX environment; command line parameters. Advanced multi-file C programs. System calls and their classification. System calls for interprocess communication and for network programming. Threads and multithreaded programming. Interprocess communication (IPC); its mechanisms in UNIX and its importance in distributed systems. The client-server paradigm. Pipes, message queues, shared memory, signals and semaphores. Sockets, TCP/IP and their use for interprocess communication in computer networks; the Client/Server model. TCP and UDP sockets for communication in networks. Web client-server in a networked system. Remote procedure call (RPC) mechanisms and uses. Introduction to systems and network programming in Windows operating systems.

Textbook: W. Richard Stevens, Stephen A. Rago, Advanced Programming in the UNIX Environment, 3rd ed., Addison-Wesley Professional, 2013.

Reading: Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language, Prentice Hall, 1988.

27.	Course code: COMP 341	Course title: Database Systems
	Introduction to database management. Data storing	methods and data organization. Hierarchical data modeling
	and schemas. E-R diagrams. Relational algebra and	database processing languages (SQL, Quel etc). Synchronous
	tasks and their design. Logical database design. Obj	ect oriented and fuzzy logic databases.
	Textbook: Fundamentals of Database Systems, Elm	asri & Navathe, Addison-Wesley.

28.Course code: COMP 351Course title: Analysis of AlgorithmsDefinition and properties of Algorithms. Design, analysis, and representation of Algorithms. Data abstraction.
Pseudo code conventions. Computation models. Mathematical foundations: growth of functions, asymptotic
notations. Study of recursive algorithms and associated recurrence relations (substitution method, iteration
method, master method, recursion trees). Algorithm design paradigms: Brute-Force (Exhaustive Search), Divide-
and-Conquer (Merge Sort, Binary Search Tree), Dynamic Programming (Matrix-Chain multiplication, LCS-
length, 01-Knapsack Problem). Greedy algorithms (Greedy Activity Selector, Fractional Knapsack Problem).
Graph Algorithms; representation of sets and graphs. Breadth-first search, depth-first search. Minimum spanning
trees (MST). Single-source shortest paths. All-pairs of shortest paths.

29.Course code: COMP 322Course title: Signals and SystemsDefinitions of signals and systems. Linear and time independent systems. Frequency domain. Frequency response.
Fourier demonstration of periodic signals. Continuous and discrete signals. Sampling theorem. Filtering; Finite
impulse response filters; Sampling and reconstruction. Basic principles of communication systems.
Textbook: Alan V. Oppenheim, Alan S. Willsky, Signals and Systems, Second Edition, Prentice/Hall Signal
Processing Series, 1997.

30.	Course code: COMP 324 Course title: Computer Architecture
	Computer management and design, tasks, decoding and execution, CPU control and programming.
	Microprogramming. ALU and its mechanism. Data input, bus structures, pipelined data processing. Memory
	control and addressing techniques.
	Textbook: M. Morris Mano, Computer System Architecture, 3/e, Prentice Hall, 1993

31. Course code: COMP 332
 Course title: Data Communication and Computer Networks
 Principles of data communications; information transfer, computer networks and their applications. Network structures, architectures and protocols. Open systems and the ISO-OSI reference model; services and network standardization. Communication systems: transmission media, analog and digital transmission. PSTN, modems, PCM, encoding and digital interface. Transmission and switching: FDM, TDM, modulation, circuit, packet and message switching. The store and forward concept. Networking characteristics. Storage, delay, multiplexing, bandwidth sharing and dynamic bandwidth management, QoS. Channel organization, framing, channel access control. PSPDN and integrated digital network concept: ISDN. LANs, MANs and WANs. ATM and gigabit networking. Communication models. De-facto standards. The Internet open architecture and the protocol suite. Modern applications of networking.
 Textbook: Stallings W., Data and Computer Communications", 8th Ed., Prentice-Hall, 2007.

Reading: Tanenbaum, A.S., "Computer Networks", 4th Ed., Prentice Hall Publ., 201.

32.	Course code: COMP 342	Course title: Software Engineering
	Software Engineering paradigms. The software life	cycle. Systems analysis. Requirements analysis. Specification
	of requirements. Software design and selection.	Initial design, modularity, structure charts and partitioning.

Detailed design and notations. Data structure design. Database Design. User interface Design. Design documentation and software maintenance.

Textbook: Pressman R.S., Software engineering: Analysis and Design, 5th Int. Ed., McGraw Hill. **Reading:** Sommerville I., Software Engineering, Prentice Hall.

33.	Course code: COMP 352	Course title: Programming Languages
	Introduction to programming languages. History	and development of programming languages. Structures and
	meanings of the languages: CFG, BNF, recursive	e descent parsing, attribute grammars, Lexical and syntactic
	analysis using Lex and Yacc. Basic properties of	the variables: name, address, type, value, scope and lifetime.
	Type checking. Analysis of basic and compound da	ata types. Arithmetic and logical statements, assigning. Control
	structures. Usage and implementation of functions,	parameter passing methods. Data abstraction. Object oriented,
	functional and logic programming languages.	
	Textbook: Krishnamurthi S., Programming Langua	ges: Application and Interpretation,
	Reading: Java - How to Program, (2002), Deitel &	Deitel, Prentice Hall

34.	Course code: COMP 401	Course title: Engineering Design I
	Engineering Design is an important activity that	each engineering student must carry out and go through the
	phases of the design process. Engineering design is	expected to be carried out by students within teams under the
	supervision of an instructor. It is desired that each	n project be an interdisciplinary capstone design project. The
	project is spread to one academic year and it involve	ves the courses COMP401 and COMP402. COMP401 includes
	the initial problem formulation, a technical survey,	the detailed problem study, analysis and description, as well as
	formulation of a methodical way for the initial se	plution. A detailed preliminary design documentation for the
	solution of a realistic and reasonably complex con	nputer engineering problem. It is an extended exercise in the
	professional application of the skills and experience	e gained in the undergraduate program. Students form teams,
	and each team chooses a topic proposed by course	instructors. Students are expected to present their progress in
	the form of reports and presentation, both during the	e semester and at the end of the semester.

 35.
 Course code: COMP 403
 Course title: Summer Training

 In partial fulfillment of the graduation requirements, all students must complete 40 work days of summer training after the end of the second and/or (preferably) third year, during summer vacations. The summer training should be carried out in accordance with the rules and regulations set by the Department/Faculty. Registration of summer training is done during the semester immediately following the training.

36.	Course code: COMP 471	Course title: Computer Simulation
	General concept of a system; discrete and continue	bus systems. Modelling and simulation of systems. State vari-
	ables. Event scheduling. Comparison of analytical a	nd simulation modelling techniques. Monte-Carlo and discrete
	event simulation. General structure of a discrete-	event simulation system. Probabilistic aspects of simulation.
	Simulation languages and software. Statistical n	nodels in simulation. Random number and random variate
	generation techniques. Queuing models in simulati	on. Input modelling. Verification and validation of simulation
	models. Output (statistical) analysis and representat	ion of simulation results. Applications of simulation.
	Textbook: J. Banks, J.S. Carson II, B.L. Nelso	on, D.M. Nicol, Discrete-Event System Simulation, 5th Ed.,
	Prentice-Hall, 2010.	

37.	Course code: TE-01	Course title: Technical Elective
	This is a Technical Elective course which will be	selected by students in their senior year and is offered by the
	department alternatively during the Fall and Spring	semesters. Please see the Technical Elective courses list.

38.	Course code: TE-02	Course title: Technical Elective
	This is a Technical Elective course which will be	selected by students in their senior year and is offered by the
	department alternatively during the Fall and Spring	semesters. Please see the Technical Elective courses list.

39. Course code: GEED-03 **Course title:** General Education Elective-III See GEED-01 course description. See GEED-01 course description.

 40.
 Course code: COMP 402
 Course title: Engineering Design II

 This course is the sequel to COMP401. It consists of the implementation of a realistic, preferably interdisciplinary, engineering capstone design project emphasizing engineering design principles on a computer engineering topic.

It is carried out by a team of students under the supervision of an instructor. The team must complete the detailed design and implementation of the preliminary design they started in the COMP401 course. It is an extended exercise in the professional application of the knowledge, experience and skills gained in the undergraduate program. The team has to complete analysis, design, implementation, testing and documentation of a proto-type or actual engineered product, present it and submit a final report in the technical project report format.

41.	Course code: COMP 454	Course title: Automata Theory
	Automata and formal languages, finite state machin	es. formal languages and push down automata. Context free
	languages and grammars. Normal structured gramm	ars. Instability and insolvability. Turing machines and their
	usage in problem solving.	
	Textbook: J.E. Hopcroft, J. D. Ullman, Introduction	n to Automata Theory, Languages and Computation, Addison
	Wesley 1979.	· · · ·

42.	Course code: TE-03	Course title: Technical Elective
	This is a Technical Elective course which will be	selected by students in their senior year and is offered by the
	department alternatively during the Fall and Spring	semesters. Please see the Technical Elective courses list.

43.	Course code: TE-04	Course title: Technical Elective
	This is a Technical Elective course which will be	selected by students in their senior year and is offered by the
	department alternatively during the Fall and Spring	semesters. Please see the Technical Elective courses list.

44.	Course code: COMP404	Course title: Engineering Attributes & Ethics
	This is a final year course which aims to provide ki	nowledge and awareness of a number of important engineering
	issues. The knowledge areas include but are n	ot limited to: professionalism, ethics, project management,
	sustainable development, risk management, cha	nge management, standards, health, environment, hazards,
	workplace health and security, societal issues as we	ell as contemporary issues reflecting on the applications of the
	engineering profession. Awareness areas include bu	at are not limited to enterpreneurship, innovation and the legal
	ramifications of the engineering solutions.	